Successful Business Continuity

Title: Successful Business Continuity — Part 5 of 5

This is the fifth in a series of articles discussing how to implement AIX in an
environment dedicated to business continuity. This article discusses a number of
topics which include the automated generation of documentation, job scheduling,
providing privileged access to non-administrators, and finally integrating a business
continuity mentality into everyday activities of an organization.

This article is the last in the series, the entire series of articles has discussed the
following topics:

e Article 1:
o User Names and UID Numbers
o Group Names and GID Numbers

e Article 2:
o Machine names
o Hostnames
o Boot adapter and service names
o Resource group names
o Aliases

* Article 3:
o Volume Groups
o Major Numbers
o Logical Volumes
o JFS Log Logical volume names
o Mount points
* Article 4:
o MQ Series Queue names and aliases
o Resource Group start/stop scripts
o Error logging
o Error Notification

e Article 5:
o Automated Documentation

o Console Access
o Job Scheduling

Copyright 2005 by Dana French 1

Successful Business Continuity

o Project Planning

Automated Documentation

Any business continuity or disaster recovery plan is dependent upon accurate and up-
to-date documentation. Most problems that are encountered during a disaster
recovery implementation are due to documentation not being updated to reflect the
system requirements. The solution to this problem is to institute policies and
procedures that require all system documentation be updated to reflect changes,
however this is much easier said than done. Part of the difficulty is that writing
documentation is not fun, and most system administrators would normally perform
documentation updates as a last step in a project, unless a more urgent issue arose.
Unfortunately more urgent issues always arise, and documentation updates are put on
hold until time can be spared for this activity. The result is that documentation
maintained under this methodology is almost always out-of-date. The only way to
ensure documentation is kept up-to-date is to automate the process of generating it.

Much of the work of monitoring, supporting, and maintaining AIX systems is
performed by shell or perl scripts, written by the system administrators. Maintaining
current documentation for these scripts is usually performed as a separate process
from writing or updating the scripts. I have found that combining the processes of
script writing and script documentation can eliminate the time lag between the time
the scripts are written or updated, and the time the documentation is created or
updated. The reason is usually because system administrators enjoy writing scripts,
but despise writing documentation. By combining the two an IT manager can
increase the likelihood of successful business continuity, in the event of a disaster.

The methodology of combining script writing with script documentation is to
implement policies, guidelines, standards, and procedures for writing scripts which
requires the documentation should be embedded within the script, at the time it is
written or modified. The activity of script writing, which system administrators
usually enjoy, simply includes the documentation activity. Documentation is no
longer a drudgery, it is a part of writing scripts. The following shell script template
illustrates how to define a generic shell script that includes embedded
documentation:

#!/usr/bin/ksh93
HHAEHAES A AR AR A A A A R
function usagemsg your function ({

print "

Copyright 2005 by Dana French 2

Successful Business Continuity

Program: your function

Place a brief description (< 255 chars) of your shell
function here.

Usage: S${1l##*/} [-?VV]

Where:
-v = Verbose mode - displays your_ function function info
-V = Very Verbose Mode - debug output displayed

|
~J
]

Help - display this message

Author: Your Name (YourEmail@address.com)
\"AutoContent\" enabled

}
HHEEHAES A A AR A AR A AR AR A
HHHH
Description:
#HHH
Place a full text description of your shell function here.
HHHH
Assumptions:
HHHH
Provide a list of assumptions your shell function makes,
with a description of each assumption.
HHHH
Dependencies:
#HHH
Provide a list of dependencies your shell function has,
with a description of each dependency.
#HHH
Products:
HHHH
Provide a list of output your shell function produces,
with a description of each product.
HHHH
Configured Usage:
HHHH
Describe how your shell function should be used.
#HHH
Details:
HHHH
Place nothing here, the details are your shell function.
HHHH
}
HHEFHAESHA AR AA AR E AR AR A A A A R
function your function {
typeset VERSION="1.0"
typeset TRUE="1"
typeset FALSE="0"
typeset VERBOSE="${FALSE}"
typeset VERYVERB="S${FALSE}"

while getopts ":vV" OPTION

Copyright 2005 by Dana French

Successful Business Continuity

do
case "${OPTION}" in
'v') VERBOSE="${TRUE}";;
'V') VERYVERB="${TRUE}";;
[?:#]) usagemsg_your_ function "${0}" && return 1 ;;
esac
done

shift $((${OPTIND} - 1))
trap "usagemsg_your_ function ${0}" EXIT

Place any command line option error checking statements
here. 1If an error is detected, print a message to

standard error, and return from this function with a
non-zero return code. The "trap" statement will cause
the "usagemsg" to be displayed.

trap "-" EXIT
((VERYVERB == TRUE)) && set -x
((VERBOSE == TRUE)) && print -u 2 "# Version........: ${VERSION}"

AR s R s R EEEEEEEEEEE

#HHH

Your shell function should perform it's specfic work here.
All work performed by your shell function should be coded
within this section of the function. This does not mean that
your function should be called from here, it means the shell
code that performs the work of your function should be

incorporated into the body of this function. This should
become your function.

HHHH

return 0

}
FHESAHHHHHHRRHHHRBHHHHHHHB A HHHHH A A A A

your_ function “${@}"”

As can be seen in the example shell script template, it contains a function to generate
a usage message for the user. This should be a part of all scripts in some form or
fashion and is used as part of the automated documentation process. All parts of this
particular shell script template are written as functions, to facilitate their inclusion in
a function library. The template includes sections for a description of the scripts
purpose, the assumptions, dependencies, products, and usage. Notice each line of the
embedded documentation in the template begins with four (4) hash marks (#)

Copyright 2005 by Dana French 4

Successful Business Continuity

followed by a space character. This identifier is used to indicate which lines of the
script are to be extracted by a documentation generator.

There are many documentation generators available, probably the best known is
“Doxygen” (http://www.doxygen.org), however they can be complex, difficult to
implement for existing scripts, and limited in their portability. For the purpose of
generating documentation from shell or perl scripts, it is usually best to write a script
that performs this function according to your particular needs and requirements. An
example documentation generator, called “autocontent”, follows. This example uses
a predefined configuration file to identify scripts on local or remote systems, copy
the scripts, then extract and build HTML based documentation from them. The “rcp”
command is used in this example to copy remote files, but can be easily changed to
“scp” if so desired. The documentation for the “autocontent™ script is, of course,
embedded within the script, and can be automatically generated by configuring and
running “autocontent” to extract it's own documentation.

#!/usr/bin/ksh93
FHESHA A A A A A EEE S A S A A A R RS
function usagemsg {
print ""
print "Program: autocontent"
print ""
print "This utility parses a list of scripts, extracts the comments"
print "from within the script, and builds HTML snippets from the"
print "extracted comments and source code."
print "It uses a data file to specify the machine and full path"
print "file name of the source file. Also specified in the data"
print "file is the machine and directory location where the"
print "HTML snippets will be placed."

print

print ""

print "Usage: ${l##*/} {-d|-1|-f datafile} [-v] [-0] [-c|-u] [-?]"
print ""

print " Where -d = Use ./AutoContent.dat as the data file"
print " -1 = Use /usr/local/AutoContent/AutoContent.dat as the data file"
print " -f datafile = Specify the AutoContent Data File"
print " -v = Verbose Mode"

print " -o = Send all HTML output to STDOUT"

print " -c = Generate code document only"

print " -u = Generate usage document only"

print " -? = Display usage and help message"

print ""

print "Author: Dana French (dfrench@mtxia.com)"

print ""

print "\"AutoContent\" enabled"

print ""

}

FhEHHESHHHA AR A AR A R R R R R

#H##

Description:

FHEH

This utility parses a list of scripts, extracts the comments
from within the script, and builds HTML snippets from the

extracted comments and source code. The HTML snippet is saved
in a location designated by the user under a file name comprised
of the original file name suffix up to the first dot ".", followed
by ".content.shtml". The "shtml" extention is used because

Copyright 2005 by Dana French 5

http://www.doxygen.org/

Successful Business Continuity

the HTML snippet is intended to be used as part of a server-side
include document on a web server.

Operation of "AutoContent" is controlled by a data file that
contains information about the files to be processed. Each
line of the data file represents a record of information and
is processed in sequence. Each line of data should be
formatted into a "source" and "destination" portion. The
source portion designates a file to be processed by
"AutoContent” and the machine on which it resides. The
destination portion of the data line designates a machine

and directory location to place the results of the processing.

The data file consists of a series of lines, one record

per line. A record consists of several fields

specifying the source machine, full path file name,
followed by an optional field whose contents are

variable. The next field specifies the destination machine
and should be separated from the previous set of "source"
fields using a space, tab, pipe symbol or comma. Following
the destination machine name should be the full path
destination directory name.

Example data file records:

xyzmach:/usr/local/bin/script0l.ksh:-? webserver:/www/httpd/html/scripts
xyzmach:/usr/local/bin/script02.ksh|webserver:/www/httpd/html/scripts
xyzmach:/usr/local/bin/script03.ksh:-?,webserver:/www/httpd/html/scripts

In the above examples, the optional field following the
full path source file name contains the characters "-2".
This causes "AutoContent" to execute this script with a
"-?" option on the command line expecting to receive a
usage message. The usage message is captured and added
to the documentation.

Assumptions:

It is assumed that any file defined in the data file with

the "-?" optional field, is an executable file, recognizes

the "-?" option and generates a usage message if the script is
executed with that option. Each file defined using

the "-?" optional field WILL BE EXECUTED with the

"-?" option to generate the usage message. If the script does not
recognize the "-?" option, THE SCRIPT WILL EXECUTE as though no
command line arguments were provided and perform whatever tasks
it does under that condition. Be sure that any file referenced
by "autocontent" using the "-?" optional field, recognizes

the "-?" option.

The "autocontent" script generates its list of files for which
it generates documentation from the files contained in

the "/usr/local/AutoContent" directory. Scripts should NOT be
stored in this directory, only a symbolic link to the script
should exist in "/usr/local/AutoContent".

Additional documentation may be generated if the comments within

the script conform to the "autocontent" technique of imbedding
comments in scripts.

Dependencies:

The list of scripts for the HTML snippet documents are generated, is
embedded within the "autocontent" script. To change the list, the

"autocontent" script must be edited.

The "autocontent" script is a Korn Shell 93 script and must
be executed using a Korn Shell 93 compliant script interpreter.

Copyright 2005 by Dana French

Successful Business Continuity

Products:

For each specified script, the "autocontent" script generates
an HTML snippet file, that contains the usage message and any
additional comments extracted from the script. Also produced
is a separate HTML snippet file that contains the script itself
enclosed in HTML tags to preserve formatting.

Configured Usage:

This script requires no arguments and can be run from the command
line, scheduled, or executed from within another script.

This script does not perform any file transfers. How the

files generated by this script are utilized is beyond the scope
of this script.

Details:

BhEFSEEHEE SR EA AR A AR A R AR RS E AR R R R R R R R
TRUE=1

FALSE=0

VERBOSE="${FALSE}"

STDOUT="${FALSE}"

USAGEDOC="$ {TRUE} "

CODEDOC="$ {TRUE}"

export DD_TMP="${DD_TMP:-/tmp}"

TMPFILE="/tmp/tmp${$}.tmp"

while getopts ":vdlf:ocu" OPTION

do
case "${OPTION}" in
'd') AUTOCONTENT="./AutoContent.dat";;
'l') AUTOCONTENT="/usr/local/AutoContent/AutoContent.dat";;
'f') AUTOCONTENT="${OPTARG}";;
'o') STDOUT="${TRUE}";;
'c') CODEDOC="${TRUE}"
USAGEDOC="${FALSE}";;
'u') USAGEDOC="${TRUE}"
CODEDOC="${FALSE}"; ;
'v') VERBOSE="${TRUE}";;
'?') usagemsg "${0}" && exit 1 ;;
esac
done

shift $((${OPTIND} - 1))

trap "usagemsg ${0}" EXIT
DATAFILE="${AUTOCONTENT: ?ERROR: run \"${0} -?\" for help and usage}"
trap "-" EXIT

if [[-f "${AUTOCONTENT}" 1]]
then
((VERBOSE == TRUE)) && print -u2 "# Specified data file found"
((VERBOSE == TRUE)) && print -u2 "# $ {AUTOCONTENT} "
else
print -u2 "# AutoContent data file does not exist"
print -u2 "# $ {AUTOCONTENT}"
exit 2
fi

FHEFHFFFFFFFFFFFFAAA A A A R R R R

4

This script is primarily used to automatically generate documentation
content in association with the Disaster Recovery scripts. However
this is an arbitrary association, this script is generic and can

be used with any scripts which conform to the rules by which

"AutoContent" operates.

Data lines are read from a user designated file that contains

Copyright 2005 by Dana French

Successful Business Continuity

information that controls the operation of "AutoContent".
Each line of data should be formatted into a "source" and
"destination" portion. The source portion designates a file
to be processed by "AutoContent" and the machine on which it
resides. The destination portion of the data line designates
a machine and directory location to place the results of the
processing.

Each line in the data file should be formatted as follows:

{source machine name}:{Full Path File Name}[:-?]
{space, tab, comma or pipe}
{destination machine name}:{Full Path Directory Name}

If the option flag "-?" is used at the end of a source
file name, the file will be treated as as script and
executed using the option flag as an argument. This
assumes the option flag will cause the script to

generate a usage message which will be captured and
included in the generated documentation.

If used, the optional flag must be separated from the
source file name using a colon (:).

FHEFHHHREEH R AR R R R R R R R R

((VERBOSE == TRUE)) && print -u2 "# Building scripts overview document"
while IFS="" read -r -- LINE
do
if [["${LINE}" = *+([[:blank:1]|,|\])* 11
then
((VERBOSE == TRUE)) && print -u2 "\n# Data line properly divided into SRC and DEST."
else
print -u2 "\n# ERROR: Data line improperly formatted."
print -u2 "# ERROR: Unable to determine SRC and DEST areas."
print -u2 "# ERROR: ${LINE}\n"
continue
fi

FHAFHHHAAAH AR B AEAE AR AR R AR R R R R R R R R R R R

The source portion of the data line is extracted from

the data line by deleting the largest matching pattern from
the end of the line that matches anything up to the

first space, tab, comma, or pipe symbol in the line. The

result contains the source machine name, the source file name,
and possibly an option flag. The format of the result should
have a colon (:) between the source machine name, the source
file name, and if present, the option flag.

If the result is formatted correctly, it is separated in to
its components. If the option flag is present, it is

saved in a variable named "SRCFLAG".

#H##

FHESSH A A HHHFHHHHHHFHFHFFFFFFHHHHH AR H AR

SRCFLAG=" "
SRC="$ {LINE%%+([[:blank:1]|,|\])*}"

if [["S$S{SRC}" = *:* &&
"_${SRCH#*:}" 1= ' ' &&
" ${SRC%%:*}" != ' ' &&
" ${SRCH*:}" 1= -2%]]
then

SRCMACH="$ {SRC%%:*}"
SRCFILE="S${SRC#*:}"

if [["_${SRCH#*:}" = -2]]
then

Copyright 2005 by Dana French

Successful Business Continuity

((VERBOSE == TRUE)) && print -u2 "# SRC portion of data line properly divided into
MACH, FILE, and FLAG."
SRCFILE="${SRCFILE%%:*}"
SRCFLAG="$ {SRC##*:}"
else
((VERBOSE == TRUE)) && print -u2 "# SRC portion of data line properly divided into MACH
and FILE."
fi
else
print -u2 "\n# ERROR: SRC portion of data line improperly formatted."
print -u2 "# ERROR: Unable to determine MACH and FILE areas."
print -u2 "# ERROR: ${SRC}\n"
continue
fi

FHEFEFFFFFHAFEF A A A A A A AR R R RS
4

The destination portion of the data line is extracted from
the data line by deleting the largest matching pattern from
the beginning of the line that matches anything up to the
last space, tab, comma, or pipe symbol in the line. The
result contains both the destination machine name and the
destination directory. The format of the result should have

a colon (:) between the destination machine name and the
destination directory.
a4

If the result is formatted correctly, it is separated in to
its components.

FHAFHHHAAEH AR R AR AR R R R R R R R R A R R R

DEST="${LINE##*+([[:blank:]11]|,|\])}"

if [["${DEST}" = *:* &&
" S{DEST##*:}" != "' ' &&
"_${DEST%:*}" I= '_']]
then
((VERBOSE == TRUE)) && print -u2 "# DEST portion of data line properly divided into

MACH and DIR."

DESTMACH="${DEST%%:*}"
DESTDIR="${DEST#%*:}"

else
print -u2 "\n# ERROR: DEST portion of data line improperly formatted."
print -u2 "# ERROR: Unable to determine MACH and DIR areas."
print -u2 "# ERROR: ${DEST}\n"
continue

fi

FHEFHFFHFFFAFEFEF A A A A A AR R RS
a4

Define the command to use to copy the source file from its
original location into a temporary file. Assume the source
file exists on a remote machine and define the copy command
as a remote copy, followed by the source machine name,

followed by a colon. Then test to see if the source machine
name is the same as the local machine name or defined as

"localhost". If so, reset the copy command to be a simple
copy followed by a space.

HH##

After defining the copy command, perform the copy.

#H##

FHEFHFFFFFFFFFFFFAAA A A A R R R R
CMD_CP="rcp ${SRCMACH}:"
[["${SRCMACH}" = *$(uname -n)*]] && CMD CP="cp "
[["${SRCMACH}" = localhost]] && CMD CP="cp "
rm -f "${TMPFILE}"
${CMD_CP}${SRCFILE} ${TMPFILE}

FILENAME="${SRCFILE##*/}"

Copyright 2005 by Dana French

Successful Business Continuity

FHEFHHHREE R AR R R R R R R

For each script, an HTML snippet file is created to contain

the usage message and any additional "autocontent" compliant

comments that can be extracted from the script. This file is

named using the file name suffix of the original script up to

but not including the first dot ".", followed by "doc.content.shtml".

The ".shtml" is used so the document may additionally use
server-side includes.
HH#4
s E SRS SRS SRS EE
if ((USAGEDOC == TRUE))
then

((VERBOSE == TRUE)) && print -u2 "# Building ${FILENAME} usage document"

OUTFILE="${DD_TMP}/${FILENAME%%.*}doc.content.shtml"
((STDOUT == TRUE)) && OUTFILE='&1l"

eval "exec 3>${OUTFILE}"
print -u3 "<!-- Begin \"${FILENAME}doc.content.shtml\" -->"

FHEFHFFHFFFAFFFE S A A A A AR R R R R
a4

Each Script is executed with the "-?" option to generate the
usage message associated with the script. This usage message
is saved in the documentation for the script.

Any "<" or ">" symbols generated by the usage message or extracted
from the script in the additional comments, are converted to

HTML recognizable codes that will be interpreted by the web

browser when the page is displayed.

4

FHESSHHHHHHHFHHHHHHFHHHFFHFFFHHHHHH A A R R R RS

if [["_${SRCFLAG}" != "_" 1]
then
((VERBOSE == TRUE)) && print -u2 "# Executing script to generate usage message"
print -u3 "<P><BLOCKQUOTE><PRE><CODE>"
chmod 755 "${TMPFILE}"
/usr/bin/ksh93 "${TMPFILE}" -2
sed -e "s/</\</g;s/>/\>/g;s|${TMPFILE##*/}|${SRCFILE##*/}|g" |
grep -v "ERROR" >&3

print -u3 "</CODE></PRE></BLOCKQUOTE></P>"
fi

((VERBOSE == TRUE)) && print -u2 "# Generating additional documentation for
\"$ {FILENAME}\""
print -u3 "<P><HR></P>"

FHESSHHHHHHHHHHHHHHHHHHHHHSHHH A A A AR AR R R R E
#H##

Additional comments may be extracted from the scripts if the
comments conform to the "autocontent" technique of commenting
scripts. This technique extracts only those comments embedded
within a script which begin with four hash marks followd by
a single space (####). This pattern must also occur at the
beginning of the line. Any comments which begin with this
pattern are extracted and reformatted as an HTML paragraph.

Multiple paragraphs may be designated within the script by
using the (####) pattern with nothing following. This will
be interpreted by the "autocontent" generated to mean "insert
end of paragraph tag followed by a begin paragraph tag".

Any extracted comment line which ends with a colon ":" will
be enclosed in HTML STRONG tags to make the text bold when

Copyright 2005 by Dana French

Successful Business Continuity

displayed in a browser.

a4

If "autocontent" generates multiple "End Paragraph -

Begin paragraph" pairs, they will be collapsed into a single pair.
#H##

FHESSHHHHHHHFHHHHHHHHHHHHHSHHHHHH A AR SS R R E

grep "“#### " "S{IMPFILE}" |
sed -e 's/ #### //g9;s/°$/<\/P><P>/qg" |
uniq |
sed -e '1l,1 s/<\/P><P>/<P>/g;$,$ s/<\/P><P>/<\/P>/g' |
sed -e 's/.*:$/&<\/STRONG>/g' >&3

A server-side-include directive that displays the date when
the document was generated is added to the end of each document.

S H W

print -u3 "<P><!--#config timefmt=\"%D\" -->"
print -u3 "This file last modified <!--#echo var=\"LAST MODIFIED\" --></P>"

print -u3 "<!-- End \"${FILENAME}doc.content.shtml\" -->"
exec 3>&-
fi # ((USAGEDOC == TRUE))

FhEFHHHREEA A AR RS R R R R R R

#hH#

Also for each script, an HTML snippet file is created to contain
the script source code. This file is

named using the file name suffix of the original script up to
but not including the first dot ".", followed by ".content.shtml".

The ".shtml" is used so the document may additionally use
server-side includes.

HH#4

s EE LSS LSS SRS EE

if ((CODEDOC == TRUE))
then

((VERBOSE == TRUE)) && print -u2 "# Building ${FILENAME} code document"

OUTFILE="${DD_TMP}/${FILENAME%%.*}.content.shtml"
((STDOUT == TRUE)) && OUTFILE='&1l"

eval "exec 3>${OUTFILE}"

print -u3 "<!-- Begin \"${FILENAME}.content.shtml\" -->"

print -u3 "<P><H3>Script Source Code for \"S${FILENAME}\"</H3></P>"
print -u3 "<P>This document contains the source code for the"
print -u3 "Disaster Recovery script \"${FILENAME}\"."

print -u3 "</P><P><HR></P><P><BLOCKQUOTE><PRE><CODE>"

FHESSHHHHHHHHHHHHHHHHHHHHHSHHH A A A AR AR R R R E

#H##

Any "<" or ">" symbols generated by the usage message or extracted
from the script in the additional comments, are converted to

HTML recognizable codes that will be interpreted by the web

browser when the page is displayed.

4

FHESSHHHHHHHRHHHHHHHHHHHSHSHHHH A AR A R R R RS

cat "${TMPFILE}" |
sed -e "s/</\</g;s/>/\>/g;s/\\\&/\\\\\& /g;" >&3

print -u3 "</CODE></PRE></BLOCKQUOTE></P>"
FHEFHHEHEE R R R R R R R R R R R
#hEH

A server-side-include directive that displays the date when

Copyright 2005 by Dana French 11

Successful Business Continuity

the document was generated is added to the end of each document.
Hhd4
(3333333333333 2222222222222 RSS2

print -u3 "<P><!--f#config timefmt=\"%D\" -->"
print -u3 "This file last modified <!--#echo var=\"LAST MODIFIED\" --></P>"
print -u3 "<!-- End \"${FILENAME}.content.shtml\" -->"
exec 3>&-
fi # ((CODEDOC == TRUE))

rm -f "${TMPFILE}"

if ((STDOUT == FALSE))

then
CMD_CP="rcp"
DESTNAME="${DESTMACH} : $ {DESTDIR}"

if [["${SRCMACH}" = *$(uname -n)*]]
then

DESTNAME="$ {DESTDIR}"
fi
if [["${DESTMACH}" = *$(uname -n)*]]
then

DESTNAME="S$ {DESTDIR}"
fi
if [["${SRCMACH}" = *$(uname -n)* && "${DESTMACH}" = *$(uname -n)*]]
then

CMD_CP="cp"
fi

if ((USAGEDOC == TRUE))

then
chmod 644 "${DD_TMP}/${FILENAME®%%.*}doc.content.shtml"
((VERBOSE == TRUE)) && print -u2 "# Copying usage document file to destination"
((VERBOSE == TRUE)) && print -u2 "# Destination: ${DESTNAME}"

${CMD_CP} "${DD_TMP}/${FILENAMES%%.*}doc.content.shtml" "${DESTNAME}"
rm -f "${DD_TMP}/${FILENAME%%.*}doc.content.shtml"
fi # ((USAGEDOC == TRUE))

if ((CODEDOC == TRUE))

then
chmod 644 "${DD_TMP}/${FILENAME%%.*}.content.shtml"
((VERBOSE == TRUE)) && print -u2 "# Copying code document file to destination"
((VERBOSE == TRUE)) && print -u2 "# Destination: ${DESTNAME}"

${CMD_CP} "${DD_TMP}/${FILENAMES%%.*}.content.shtml" "${DESTNAME}"
rm -f "${DD_TMP}/${FILENAME%%.*}.content.shtml"
fi # ((CODEDOC == TRUE))
fi

done < "${AUTOCONTENT}"

Documentation Look-and-Feel Generators

In order to provide flexibility and portability to the automatically generated
documentation, it should be generated only as document content, the look-and-feel,
formatting, navigation, etc. should be generated separately. This permits the
documentation to be manipulated, rearranged, regenerated, or reformatted without
disturbing the actual content.

Copyright 2005 by Dana French 12

Successful Business Continuity

The previously mentioned “Doxygen” normally generates the documentation and the
look-and-feel of the pages, which may be desirable under some circumstances,
however under other circumstances it may be regarded as limiting. It has the
tendency to lock-in the “Doxygen” methodology for managing documentation, and
makes it difficult to change when newer, better methods come along. Another
drawback of applications such as “Doxygen” is they tend to be somewhat complex
and rigid. In this day of web sites and HTML based documentation, it is usually
quicker and easier to build a small, simple HTML look-and-feel generator. To
generate the documentation in HTML, it needs to be able to create the following
parts and pieces for each document:

e Header
e Title
e Footer

* Navigation Links

Usually the most difficult part of this is generating the navigation links, because each
document will need to be linked to one or more other documents. Determining how
to create these linking structures can be a daunting task. However, applying some
simple rules can resolve this issue quite easily.

* Work from the perspective of one document at a time
* Each document can have zero or more parent documents
* Each document can have zero or more child documents.

With these three simple rules, any and all navigation structures can be built. These
rules require that each document have a parent document, and if each document has a
parent, a structured relationship can be established between all documents. All that
1s necessary is to keep a parent-child relationship for each document, from this all
other relationships can be derived. For example consider the following document
names:

grandparent1.content.shtml
grandparent2.content.shtml
grandparent3.content.shtml
grandparent4.content.shtml
parentl.content.shtml
parent2.content.shtml
child.content.shtml

Copyright 2005 by Dana French 13

Successful Business Continuity

grandchild1.content.shtml
grandchild2.content.shtml

Establishing parent-child relationships for these documents would appear as follows:

NULL grandparent
NULL grandparent?2
grandparent1 parentl
grandparent2 parentl
grandparent3 parent?2
grandparent4 parent2
parentl child

parent?2 child

child grandchildl
child grandchild2

From this simple structure it can be derived the document “child” has parent
documents named “parentl” and “parent2”. The document “child” also has children
“grandchild1” and “grandchild2”. Furthermore, all other document relationships to
“child” can be derived from this structure. These relationships can then be used to
build navigation links for each document.

An example “Look-and-Feel” generator which uses this parent-child relationship to
build navigation links follows:

#!/usr/bin/ksh93
FHEFHFFFFFHFFFFFF A A A A A A AR R R R R R R R AR
function usagemsg_menugen {

print "
Program: menugen

Create naviation and look-and-feel characteristics for a
directory of web content files.

Usage: menugen [-g]] [-S]] [-u]] [-f datafile]] | -c¢ | -C | -h
-c = Create a default \"menugen.cfg\" file
-C Overwrite \"menugen.cfg\" file, even if it already exists
-g Show grandchild links in menus
-R Position menu bar on Right side of page
-S If the static menu bar exists, overwrite it with the default
-f Use data file specified by value \"datafile\"

Copyright 2005 by Dana French 14

Successful Business Continuity

-u = Underline Menu Links
-n = Generate .html files
-v = Verbose mode

-V = Very Verbose mode

-h = Display help file

Author: Dana French (dfrench@mtxia.com) Copyright 2005
\"Autocontent Enabled\"

b
FHEFHHHHAHH AR R A AE AR R AR R R R R R R R R R R R

44
44
#hEH

Description
"menugen" is a shell script that provides the ability to
easily maintain and modify web based documentation.

This script creates a standard "look-and-feel" for user
supplied HTML based content, and generates navigation
links between the pages. An web server feature called
"Server Side Includes" (SSI) is utilized by "menugen" to
reference the various parts and pieces of each page.

To use "menugen", the user should create content and
store it in files called "XXXXXXXX.content.shtml", where
XXXXXXXX is some prefix file name defined by the user.
"menugen" creates menus, links, headers, titles,
footers, contact info links, etc, based on information
stored in a user defined relationship file. The
relationship file is assumed to be in the same directory
with the "XXXXXXXX.content.shtml" files and is called
"menugen.dat".

"menugen" allows users to modify the "look-and-feel" of
all files in a directory by storing configuration
information such as colors, font sizes, title info, etc
in a file called "menugen.cfg".

The "-c" option will create a file called "menugen.cfg"
if it does not already exist. If it does exist it will
not overwrite it. To recreate the "menugen.cfg" file,
you will first have to remove it. The "menugen.cfg"
file contains user modifiable parameters such as font
colors, font sizes background color, title and contact
information.

One of the values defined in the "menugen.cfg" file is
called "THEME". This is a title which is displayed at
the top of every page. The title can be a two part
title separated by a colon (:). The part of the title
to the left of the colon will be displayed in a larger
text. The part of the title to the right of the colon
will be displayed in italics and a smaller text. All
values in the configuration file may be changed to suit
the users particular needs. The "menugen.cfg" file MUST
be executeable.

The "menugen" program creates a menu file for each page
which contains the relationships between each page, its
parent page, and its child pages. The links displayed
on the menu by default are that of the parent and
children of each page. The "-g" option causes the
grandchildren of each page to also be included in the
menu.

Normally, if the static menu bar file exists, it is not
overwritten in order to preserve any user customization
of that file. However the "-S" option will cause the
static menubar file to be overwritten with the default
values. The static menu bar file is "staticbar.shtml".

Copyright 2005 by Dana French

15

Successful Business Continuity

The datafile describes the relationships between all the
web pages in the current directory. The relationship
between the pages is maintained via parent/child
references. By default the relationships are read from
a file called "menugen.dat" in the current directory.
The "-f" option allows the user to specify a different
file name. The datafile has the following format;

PARENT<tab>CURRENT<tab>SHORT DESCRIPTION

PARENT and CURRENT are file name prefixes and are
usually limited to 8 characters or less. TAB characters
between the fields is mandatory. PARENT is the parent
of the CURRENT page. The SHORT DESCRIPTION is a
description of the CURRENT page. An example of datafile

would be;

NULL index Home Page

index childil Child 1 of index

index child2 Child 2 of index

index child3 Child 3 of index
childl childll Child 1 of childl
childl childl2 Child 2 of childl
childl childl3 Child 3 of childl
childl childl4 Child 4 of childl
child2 child21 Child 1 of child2
child2 child22 Child 2 of child2
child2 child23 Child 3 of child2
child3 child31 Child 1 of child3
child3 child32 Child 2 of child3

In this example, the page "index" has three child pages
called "childl", "child2", and "child3". The menu on
the "index" page would reference these three pages. The
page "childl" has four child pages called "childll",
"childl2", "child13", "childl4". The menu on the
"childl" page would reference these four pages. And so
on for child pages "child2" and "child3".

The "-h" option displays this help file and is assumed
to reside in the file called
"/usr/local/sh/README.menugen".

Most graphical web browsers will show hypertext links as

underlined text of a different color than normal text.
When this program creates the menu bars, the links are
configured NOT to have underlines. If you want

the links in the menu bars to have underlines, use the
"-u" option.

Assumptions:

It is assumed that a file exists which describes a
parent-child relationship for each document. The format
of this file assumes the first column contains the

prefix name of the parent document, the second column
contains the prefix name of the child document, and the
third column contains a very short description (16 char or
less), of the child document.

The "content" files are assumed to be in the same
directory as the "menugen.dat" file.

Dependencies:
This script requires a "menugen.dat" file be created by

the user, which is normally a manual process, however
can be automated depending upon desired usage.

Copyright 2005 by Dana French

16

Successful Business Continuity

Products:

This script generates various parts and pieces

comprising the look-and-feel of the web pages. This
includes a title (title.shtml), header (X.shtml), footer
(footer.shtml), dynamic navigation links (X.menu.shtml),
static navigation links (staticbar.shtml), and a

configuration file (menugen.cfg). "X" in the above file
names represents the filename prefix of each page

identified in the "menugen.dat" file.

Configured Usage:

This script is written to be used as a command line

program, but can be scheduled to run through cron or any
other scheduling system. If scheduled, the current

directory must be the same as the directory containing
the "menugen.dat" file.

Details:
FHEFHHAHAAAHHFHFHAAAAAAFFFF AR A A A A A AR BRI BRI HHS
(3333333333333 2222222222233

The "mkconfig" function checks for or creates a

configuration file for the "menugen" program. This
configuration file contains several parameter settings
that control text, color, font, sizes, etc.

If the "menugen" configuration file already exists, do not
overwrite it, simply return with a non-zero exit code.
If the "menugen" configuration file does not exist,

create it and exit with a zero exit code.

FhEHHESHHHA AR A AR A R R R R R
mkconfig()

{
if [[-f "./menugen.cfg"]]
then
print "\"menugen.cfg\" file already exists, not overwritten"
return 1
fi
print "THEME=\"Default Theme: Default Subtheme\" # Title displayed at top of every page" >
./menugen.cfg

print "CLR_TEXT=\"#000000\"

print "CLR_BACKGRD=\"#FFFFFF\"
print "CLR_LINK=\"#0000FF\"

print "CLR_ALINK=\"#777700\"
print "CLR_VLINK=\"#770000\"
print "CLR_MENUBORDER=\"#ABADC9\"
print "CLR_MENUBG=\"#DDDDDD\"

./menugen.cfg

Text color (default=#000000)" >> ./menugen.cfg
Background color (default=#FFFFFF)" >> ./menugen.cfg
Link color (default=#0000FF)" >> ./menugen.cfg

Active Link color (default=#777700)" >> ./menugen.cfg
Viewed Link color (default=#770000)" >> ./menugen.cfg
Menu Border color (default=#ABADC9)" >> ./menugen.cfg
Menu Background color (default=#DDDDDD)" >>

HH = FH = = I

print "CLR_MENUTEXT=\"#000000\" # Menu Text color (default=#000000)" >>
./menugen.cfg

print "SIZ_ BASEFONT=\"4\" # Base Font Size (default=4)" >> ./menugen.cfg

print "CONTACT NAME=\"Dana French\" # Person responsible for this Page (default=Dana French)"
>> . /menugen.cfg

print "CONTACT EMAIL=\"dfrench@mtxia.com\" # Email address of person responsible for this

page (default=dfrench@mtxia.com)" >> ./menugen.cfg
chmod 755 ./menugen.cfg
print "\"menugen.cfg\" file was created in the current directory."
return 0

}

FHEFHFHFFHFAFFFE A A A A AR R R R
HH#H

The "mg_footer" function outputs the "footer" section of
the HTML pages, containing the information from the

"configuration" file.

#H##

FHESHAHAEAHEEEE A S A A A A A R R RS

Copyright 2005 by Dana French 17

Successful Business Continuity

mg_footer()

{
print "

<!-- Begin included file \"footer.shtml\" -->
<P><!--#include file=\"hr.shtml\" --></P>
<p>

<ADDRESS>

For information regarding this page, contact

${CONTACT NAME} (${CONTACT_ EMAIL})
</ADDRESS>

</P>

<!-- End included file \"footer.shtml\" -->

}

FHEFHAFEEH A A S A S S S A AR R R R RS
#H##

The "mg_hr" function outputs the "horizontal rule"

section of the HTML pages, using the parameter settings
from the "configuration" file.

#h#
FHESA AR HHHHHH A A A A A A H A R R R R R R R R R R R R RS
mg_hr()
{
print "
<!-- Begin included horizontal rule file \"hr.shtml\" -->

<TABLE Border=\"0\" Width=\"100%\" Cellspacing=\"0\" Cellpadding=\"0\">
<TR><TD Bgcolor=\"${CLR_MENUBORDER}\"> </TD></TR></TABLE>

<!-- End included horizontal rule file \"hr.shtml\" -->

}
FHEFHFFFFFFFFFFFFEA A A A A R R R R
4

The "mg_staticbar" function outputs the "static menu

bar" section of the HTML pages, using the parameter

settings from the "configuration" file. Currently this
section appears at the top of each HTML page.

FHEFHFFFFFFHFFFFF A A A A A A R R R R
mg_staticbar()
{
print "
<!-- Begin included static linkbar file \"staticbar.shtml\" -->

a4

If the "underline" option was specified on the command
line, output a style tag to cause HTML links in the static
menu bar to be underlined.

HH##
if ((UNDERLINE == TRUE))
then
print "
<STYLE>
<l--
A { Color:${CLR_MENUTEXT}; text-decoration:none; }
A:hover { text-decoration:underline;color:${CLR MENUTEXT}; }
//=-=>
</STYLE>
fi
#H##

Copyright 2005 by Dana French 18

Successful Business Continuity

Output the "static menu bar" containing a static set of
HTML links. This program generates a hardcoded set of

links and does not currently read these from the

configuration file. This will be a future enhancement.

print "
<p>
<TABLE Border=\"0\" Cellspacing=\"5\" Cellpadding=\"0\" Align=\"right\"><TR><TD
Bgcolor=\"white\">
<TABLE Border=\"0\" Width=\"100%\" Cellspacing=\"0\" Cellpadding=\"1\" Align=\"left\"><TR><TD
Bgcolor=\"${CLR_MENUBORDER}\">

<TABLE Border=\"0\" Width=\"100%\" Cellspacing=\"0\" Cellpadding=\"5\" Align=\"left\">
<p>

<TR>

<TD Bgcolor=\"${CLR_MENUBG}\" Align=\"left\" valign=\"top\">

 HCA

| GGI

| Mt Xia

</TD>

</TR>
</P>
</TABLE>
</TD></TR></TABLE>
</TD></TR></TABLE>
</P>

#HHH

If the "underline" option was specified on the command
line, output a style tag to cause HTML links in the menu
bar to be turned off.

HH##
if ((UNDERLINE == TRUE))
then
print "
<STYLE>
<le-
A { Color:${CLR_LINK}; text-decoration:underline; }
Azhover { text-decoration:underline;color:${CLR_LINK}; }
//-=>
</STYLE>
fi
print "
<!-- End included static linkbar file \"staticbar.shtml\" -->
}
FHESHAHEEEHEEHE A S A A A R R RS
#H##

The "mg_titlebar" function outputs the "title bar"

section of the HTML pages, using parameter settings from
the "configuration" file. If the "THEME" parameter

contains a colon character (:), the value is split into
two parts using the colon character as a delimiter. The
first part of the THEME value is displayed in a larger
text than the second part.

FHEFHESHEHEAARAHAE A A AR AR A SRR A R R R
mg_titlebar()
{

THEME1="$ {THEME}"

THEME2=" "

if [["_S${THEME}" == *:%]]

then

THEME1="${THEME%%:*}"

Copyright 2005 by Dana French

Successful Business Continuity

THEME2="$ {THEME#*:}"
fi

print "
<!-- Begin included file \"titlebar.shtml\" -->

<P>

$ {THEME1} :

<I>$ {THEME2}</I>

<!--#include file=\"hr.shtml\" --></P>

<!-- End included file \"titlebar.shtml\" -->

b
FHAFHHHAAEH AR R AEAE AR AR R AR R R R R R R R R R R

The "cat_file" function reads a file specifed by the
first command line argument to this function, and

outputs the content of the file to standard output.

This is similar to the Unix "cat" command. the purpose
of this function is to avoid executing the external Unix
command "cat".

#HH4
iR SETEESSET T]
cat_file()
{
if [[-s "${1}" 1]
then
while IFS=$'\n' read -r -- DATALINE
do
print -r -- "${DATALINE}"
done < "${l"
else
print -u 2 "# WARNING: ${1} does not exist"
fi

}
FHESSHHHHHHHHHHHHHHHHHHFHHHHHHHHHH AR RS S R RS RS
#H##

The "menugen" function is the main portion of this

program. It generates the various parts and pieces of

each web page based on a parent-child relationship

specified in a datafile. This datafile contains the

file name prefix of each file to be processed by this

program.

#H##

FHESHAHAEAAEEE S A S A A A R R RS
function menugen {

VERSION="10.0"
TRUE="1"

FALSE="0"
EXITCODE="0"
VERBOSE="$ {FALSE}"
VERYVERB="$ {FALSE}"
DATAFILE="./menugen.dat"
GRANDCHILD="${FALSE}"
HTMLFILES="S${FALSE}"
UNDERLINE="${FALSE}"
MENUPOS="left"

FHAFHHHAAEHH AR B AR AR R R R R R R R R R R R R

Check for the existance of the default configuration
file and check to see that it is executable. If it is
not executable, make it so. The default configuration
file is always assumed to be in the current directory.
After checking the existance and execute bit, execute
the default configuration file for the purpose of

establishing several shell variables that define

look-and-feel parameters for colors, font sizes, etc.

Copyright 2005 by Dana French 20

Successful Business Continuity

#hE#
FHAHHHHHAHH AR R R R R R R R R R R R R R

if [[-s "./menugen.cfg"]]

then
if [[! -x "./menugen.cfg"]]
then
if ! chmod 755 "./menugen.cfg"
then
print "Unable to make \"menugen.cfg\" executable"
return 6
fi
fi
./menugen.cfg
fi

iSRRI E T
#H##

For each of the standard parameter values in the default

configuration file, check to see if the shell variable

is unset or null. If so, assign the variable a default value.
#H##

FHEFHFFFFHFAFFF A A A A A A R RS

THEME="$ {THEME: - 'Default Theme: Default Subtheme'}"
CLR_TEXT="${CLR_TEXT:—'#000000'}"
CLR_BACKGRD="${CLR_BACKGRD:—‘#FFFFFF'}"
CLR_LINK="${CLR_LINK:—'#OOOOFF'}"
CLR_ALINK="${CLR_ALINK:—'#777700'}"
CLR_VLINK="${CLR_VLINK:-'#770000"'}"
CLR_MENUBORDER="${CLR_MENUBORDER:—'#ABADC9'}"
CLR_MENUBG="${CLR_MENUBG:—'#DDDDDD'}"
CLR_MENUTEXT="${CLR_MENUTEXT:—'#000000'}"
SIZ_BASEFONT="${SIZ_BASEFONT:—‘4‘}"
CONTACT_NAME="${CONTACT_NAME:—'Dana French'}"
CONTACT_EMAIL="${CONTACT_EMAIL:—'dfrench@mtxia.com‘}"

FHEFHFFFFFFFFFFFFEA A A A A R R R R
4

Define the default page data file that contains the

parent-child relationships between pages. Also define

several other parameter that control the default

behavior of this script.

#H##
FHEFHFFFFFFHFFFFF A A A A A A R R R R

while getopts ":vVcChgRSf:nu" OPTION

do
case "${OPTION}" in

'c') mkconfig
return 3;;

'C') rm -f "./menugen.cfg"; mkconfig
return 5;;

'h') usagemsg_menugen | more - "/usr/local/sh/README.menugen"
return 4;;

'g') GRANDCHILD="${TRUE}";;

'R') MENUPOS="right";;

'S') rm -f "./staticbar.shtml";;

'f') DATAFILE="${OPTARG}";;

'n') HTMLFILES="${TRUE}";;

'u') UNDERLINE="${TRUE}";;

'v') VERBOSE="${TRUE}";;

'V') VERYVERB="${TRUE}";;

'?') usagemsg_menugen "${0}" && return 1 ;;

':') usagemsg_menugen "${0}" && return 1 ;;

esac
done

shift $((${OPTIND} - 1))

Copyright 2005 by Dana French 21

Successful Business Continuity

trap "usagemsg_menugen ${0}" EXIT

if [["_${DATAFILE}" ="_" || ! -s "${DATAFILE}" 1]
then
usagemsg_menugen "Invalid data file name"
return 1
fi
trap "-" EXIT

FHAHHHHHAHH R R R AR R R R R R R R R

((VERBOSE == TRUE)) &&
print "# ${DATAFILE} will be used to define pages and relationships"

((VERBOSE == TRUE)) &&
((GRANDCHILD == TRUE)) &&
print "# Grandchild links will be shown on menus"

((VERYVERB == TRUE)) && set -x

Generate the static menu bar, title bar, horizontal

rule, and page footer. Only generate the static menu
bar if the file does not already exist. This is so the
static menu bar can be modified without being

overwritten each time the "menugen" program is executed.

[[! -f "./staticbar.shtml"]] && mg_staticbar > ./staticbar.shtml

mg_titlebar > ./titlebar.shtml
mg_hr > ./hr.shtml
mg_footer > ./footer.shtml

FHAFHHHAAAH AR B AE AR AR R AR R R R R R R R R R R

4

Read the parent-child relationship datafile and assign the
values to shell variables. The data file should contain
three fields, parent file name prefix, child file name
prefix, and child file name description. The three

fields should be delimited by "tab" characters.

#H##

DATATMPO="/tmp/tmp0${$}.out"
DATATMP1="/tmp/tmpl${$}.out"
DATATMP2="/tmp/tmp2${$}.out"

cat_file "${DATAFILE}" > "${DATATMPO}"

while IFS=$' \t\n' read -r -- PARENTID1 PAGEID1 PAGENAMEl
do
((VERBOSE == TRUE)) && print
#H##

Based on the current value of the child file name

prefix, re-read the entire datafile and extract only
those lines whose parent file name prefix matches the
current child file name prefix. This provides a list of
children of the current child file name prefix.

#HH#
while IFS=$'\n' read -r -- DATALINE
do
[["S{DATALINE}" == S${PAGEID1}+([S$'b\t'])*]] &&
print -r -- "${DATALINE}"

done < "${DATATMPO}" > "${DATATMP1l}"
#hE#

Based on the current value of the parent file name
prefix, re-read the entire datafile and extract the

Copyright 2005 by Dana French

22

#hE#

If the current data line begins with a comment character

Successful Business Continuity

first data line whose child file name prefix matches the
current parent file name prefix. From this dataline,
extract the description of the parent of the current
child file name prefix and store this value in a shell
variable.
while IFS=$'\n' read -r -- DATALINE
do
if [["${DATALINE}" == *+([$'\t'])${PARENTID1}+([$'\t'])* 1]
then

DATALINE=${DATALINE//+([$'\t'])/:}
PARENTNAME="$ {DATALINE##*:}"
break

fi

done < "${DATATMPO}"

((VERBOSE == TRUE)) && print "# ${PARENTNAME}"
typeset -u PGNMTMP="${PAGENAME1}"
((VERBOSE == TRUE)) && print "# $ {PGNMTMP} "

(#), skip it and continue with the next data line.
#H##

if [["_${PARENTID1}" == \#*]]

then

continue

fi
HH##
If the "-R" command line option was specified, then
create an "index.shtml" file that positions the "menu
bar" on the right hand side of each HTML page.
Otherwise generate an "index.shtml" file with the "menu
bar" positioned on the left side of each HTML page. The
"index.shtml" file is build assuming that server sides
includes (SSI) is implemented on whatever web server
will host these files.
HH#H

if [["_${MENUPOS}" = " _right"]]

then

print "

<HTML>
<!-- PARENTID1=\"${PARENTID1}\" -->
<!-— PAGEID1=\"${PAGEID1}\" -->
<!-- PAGENAME1l=\"${PAGENAME1l}\" -->
<HEAD>
<TITLE>${PAGENAMEl} - ${THEME}</TITLE>
</HEAD>

<BODY Bgcolor=\"${CLR_BACKGRD}\" Text=\"${CLR_TEXT}\" Link=\"${CLR LINK}\" Alink=\"${CLR_ALINK}\"
V1ink=\"${CLR_VLINK}\">

<BAS
<l--
<l--

<TABLE Width="100%" Cellspacing=\"0\" Cellpadding=\"0\" Border=\"0\">

EFONT Size=\"${SIZ_BASEFONT}\">
#include file=\"staticbar.shtml\" -->
#include file=\"titlebar.shtml\" -->

<P><TR><TD Width=\"80%\" Height=\"10%\" Valign="top">
<P><H2>$ {PAGENAME1}</H2></P>

<P><HR></P>

</TD><TD Width="20%" Align=\"right\" Valign=\"top\" rowspan=\"2\">
<!--#include file=\"${PAGEID1##*/}.menu.shtml\" -->

</TD></TR></P>

">

"${PAGEID1/#*\///tmp/}.shtml"
else

print "

Copyright 2005 by Dana French

23

Successful Business Continuity

<HTML>

<!-— PARENTID1=\"${PARENTID1}\" -->
<!-- PAGEID1=\"${PAGEID1}\" -->

<!-- PAGENAME1=\"${PAGENAME1l}\" -->
<HEAD>

<TITLE>${PAGENAMEl} - ${THEME}</TITLE>
</HEAD>

<BODY Bgcolor=\"${CLR BACKGRD}\" Text=\"${CLR _TEXT}\" Link=\"${CLR LINK}\" Alink=\"${CLR _ALINK}\"
V1ink=\"${CLR _VLINK}\">
<BASEFONT Size=\"${SIZ_ BASEFONT}\">

<!--#include file=\"staticbar.shtml\" -->
<!--#include file=\"titlebar.shtml\" -->
<!--#include file=\"${PAGEID1##*/}.menu.shtml\" -->
<P><H2>$ {PAGENAME1}</H2></P>

<P><HR></P>

" > "${PAGEID1/#*\///tmp/}.shtml"
fi
[E3E S sEESSSsEES s E RS SEEEESESEESSSEEESSILE S

#H##

Begin building the "menu bar" file. This will be unique
to each HTML page and is based on the parent-child

relationships defined in the datafile.

a4

print "

<!-- Begin included menu file \"${PAGEID1}.menu.shtml\" -->
" > "$S{PAGEID1/#*\///tmp/}.menu.shtml"

HHEH

If the "underline" option was specified on the command
line, output a style tag to cause HTML links in the
menu bar to be underlined.

#H##
if ((UNDERLINE == TRUE))
then
print "
<STYLE>
<l--
A { Color:${CLR_MENUTEXT}; text-decoration:none; }
A:zhover { text-decoration:underline;color:${CLR MENUTEXT}; }
//==>
</STYLE>
" >> "${PAGEID1/#*\///tmp/}.menu.shtml"
fi
#H##
Output the "menu bar" presentation to the menu bar file.
#H##
print "

<P Align=\"right\">
<TABLE Border=\"0\" Cellspacing=\"5\" Cellpadding=\"0\" Align=\"left\"><TR><TD Bgcolor=\"white\">
<TABLE Border=\"0\" Width=\"100%\" Cellspacing=\"0\" Cellpadding=\"1\" Align=\"left\"><TR><TD
Bgcolor=\"${CLR_MENUBORDER}\">
<TABLE Border=\"0\" Width=\"100%\" Cellspacing=\"0\" Cellpadding=\"5\" Align=\"left\"
Valign=\"top\">
<p>
<TR>
<TD Bgcolor=\"${CLR_MENUBG}\" Align=\"left\" Valign=\"top\">

<I>Current:</I>${PAGENAME1l// / }

<I>Previous:</I>${PARENTNAME// / }
" >> "${PAGEID1/#*\///tmp/}.menu.shtml"

#hE#

Copyright 2005 by Dana French 24

Successful Business Continuity

If the description of the parent of the current child
file name is equal to the phrase "Home Page", then

output a link to the "index" file with a description of
"Home Page".

#H#4
if [["_${PARENTNAME}" != "_Home Page"]]
then
print "
Home Page" >> "${PAGEID1/#*\///tmp/}.menu.shtml"
fi

print "
" >> "${PAGEID1/#*\///tmp/}.menu.shtml"

Using the previously generated list of children of the

current child file name prefix, loop through each line

in the list and extract the three fields into

secondary shell

variables. Again the three fields are parent file name
prefix, child file name prefix, and child description.

while IFS=$' \t\n' read -r -- PARENTID2 PAGEID2 PAGENAME2
do

#H##

If the child file name prefix contains a hash mark (#)
this means the link is a reference to an anchor tag
within the same file. For this occurance, set a shell
variable to the exact value of the child file name
prefix. Otherwise set a shell variable to the child
file name prefix followed by the literal characters
".shtml".

LINK="${PAGEID2}.shtml"

if [["_${PAGEID2}" == _*\#*]]
then
LINK="${PAGEID2}"

fi

((VERBOSE == TRUE)) && print " $ {PAGENAME2}"
#H##
Output the HTML link to the menu file.
#H##

print "
${PAGENAME2// / }" >>
"${PAGEID1/#*\///tmp/}.menu.shtml"

if ((GRANDCHILD == TRUE))
then

#hH#

Re-read the parent-child relationship datafile and

extract the lines that begin with the secondary child
file name prefix and save the lines to a temporary

storage file for processing. This data can be used for
generating grandchild links, if so specified by command
line option "-g".

#HHH
while IFS=$'\n' read -r -- DATALINE
do
[[" _${DATALINE}" == S${PAGEID2}+([$'\t'])*]] &&
print -r -- "${PAGEID2}"
done < "${DATATMPO}" > "${DATATMP2}"
#HHH

Using the lines extracted from the parent-child

relationship datafile that begin with the secondary
child file name prefix, read each line and use the

information to generate grandchild HTML links that will

Copyright 2005 by Dana French

Successful Business Continuity

appear in the "menu" bar. These are grandchildren of
the current child file name prefix.

#HH#
ICNT="${FALSE}"
print "" >> "${PAGEID1/#*\///tmp/}.menu.shtml"
while IFS=$' \t\n' read -r -- PARENTID3 PAGEID3 PAGENAME3
do
ICNT="${TRUE}"
LINK="${PAGEID3}.shtml"
333

If the grandchild file name prefix contains a hash (#)
character, then this page should link to an anchor tag
associated with it's parent.

#hH#
if [["_${PAGEID3}" == _*\#*]]
then
LINK="$ {PARENTID3}.shtml${PAGEID3}"
fi
print " $ {PAGENAME3}"

Display the grandchild link in the menu bar.

print " ${PAGENAME3// / }" >>
"${PAGEID1/#*\///tmp/}.menu.shtml"

done < "${DATATMP2}"

print "" >> "${PAGEIDl}.menu.shtml"
((ICNT == TRUE)) && print "
" >> "${PAGEID1/#*\///tmp/}.menu.shtml"
fi
done < "${DATATMP1}"

S s EESE s EESEEEESSESEES S SRS RS
print "

</TD>
</TR>
</P>
</TABLE>
</TD></TR></TABLE>
</TD></TR></TABLE>
</P>
" >> "${PAGEID1/#*\///tmp/}.menu.shtml"

#HHH

If the "underline" option was specified on the command
line, output a style tag to cause HTML links in the menu
bar to be turned off.

#H##
if ((UNDERLINE == TRUE))
then
print "
<STYLE>
<l--
A { Color:${CLR_LINK}; text-decoration:underline; }
A:hover { text-decoration:underline;color:${CLR_LINK}; }
//=-=>
</STYLE>
" >> "${PAGEID1/#*\///tmp/}.menu.shtml"
fi
print "
<!-- End included menu file \"${PAGEID1l}.menu.shtml\" -->

" >> "${PAGEID1/#*\///tmp/}.menu.shtml"

Copyright 2005 by Dana French

26

Successful Business Continuity

FHEFHHHREE R AR R R R R R R
#hE#

If the "-R" option was specified on the command line,
format the HTML to render the "menu" bar on the

right hand side of the page, otherwise render the
"menu" bar on the left hand side of the page.

#HH#

if [["_${MENUPOS}" = " right"]]

then

print "

<P><TR><TD Valign=\"top\">
<!--#include file=\"${PAGEID1l}.content.shtml\" -->
</TD></TR></P>
</TABLE>
</Pp>

" >> "${PAGEID1/#*\///tmp/}.shtml"
else

print "
<!--#include file=\"${PAGEID1l}.content.shtml\" -->
" >> "${PAGEID1/#*\///tmp/}.shtml"

fi

print "<!--#include file=\"footer.shtml\" -->
</BODY>
</HTML>
" >> "${PAGEID1/#*\///tmp/}.shtml"

HHEH

If the "-n" option was specified on the command line,
then in addition to generating SSI ".shtml" pages, also
generate ".html" pages with all included pages inserted
into the final document.

#HH#

if ((HTMLFILES == TRUE))

then

print "

<HTML>
<!-- PARENTID1=\"${PARENTID1}\" -->
<!-— PAGEID1=\"${PAGEID1}\" -->
<!-- PAGENAME1l=\"${PAGENAME1l}\" -->
<HEAD>
<TITLE>${PAGENAMEl} - ${THEME}</TITLE>
</HEAD>

<BODY Bgcolor=\"${CLR_BACKGRD}\" Text=\"${CLR_TEXT}\" Link=\"${CLR LINK}\" Alink=\"${CLR ALINK}\"
V1ink=\"${CLR_VLINK}\">

<BASEFONT Size=\"${SIZ_ BASEFONT}\">

" > "${PAGEID1/#*\///tmp/}.html"

#H##

Read the HTML code from the "staticbar.shtml" file and
insert it into the ".html" file. Do the same for the
"titlebar.shtml" and "hr.shtml" files.

Hhd4
cat_file "staticbar.shtml" >> "${PAGEID1/#*\///tmp/}.html"
cat_file "titlebar.shtml" >> "${PAGEID1/#*\///tmp/}.html"
cat_file "hr.shtml" >> "${PAGEID1/#*\///tmp/}.html"

HheH

If the "-R" option was specified on the command line,
format the HTML to render the "menu" bar on the right
hand side of the ".html" page, otherwise render the
"menu" bar on the left hand side of the page.

Copyright 2005 by Dana French 27

Successful Business Continuity

if [["_${MENUPOS}" = " right" 1]
then

print "
<TABLE Width="100%" Cellspacing=\"0\" Cellpadding=\"0\" Border=\"0\">
<P><TR><TD Width=\"80%\" Height=\"10%\">
<P><H2>${PAGENAME1}</H2></P>
<P><HR></P>
</TD><TD Width="20%" Align=\"right\" Valign=\"top\" rowspan=\"2\">
" >> "${PAGEID1}.html"

sed -e "s/\.shtml/.html/g" "${PAGEID1l}.menu.shtml" >> "S${PAGEID1/#*\///tmp/}.html"

replaced by following while loop

Read the "menu" HTML code and insert it into the ".html"
###4 file.

while IFS=$'\n' read -r -- DATALINE
do
print "${DATALINE//.shtml/.html}"
done < "${PAGEID1l}.menu.shtml" >> "${PAGEID1/#*\///tmp/}.html"

print "
</TD></TR></P>
<P><TR><TD Valign=\"top\">
" >> "${PAGEID1/#*\///tmp/}.html"

Read the "content" file and insert it into the ".html"
###4 file.

cat_file "${PAGEIDl}.content.shtml" >> "${PAGEID1/#*\///tmp/}.html"

print "
</TD></TR></P>
</TABLE>
</P>
" >> "${PAGEID1/#*\///tmp/}.html"

else

4

If the "-R" option was NOT specified on the command line,
format the HTML to render the "menu" bar on the left
hand side of the ".html" page.

sed -e "s/\.shtml/.html/g" "S${PAGEID1l}.menu.shtml" >> "S${PAGEID1/#*\///tmp/}.html"

replaced by following while loop

Read the "menu" file and insert it into the ".html"
44 file.

while IFS=$'\n' read -r -- DATALINE
do
print "${DATALINE//.shtml/.html}"

done < "${PAGEIDl}.menu.shtml" >> "${PAGEID1/#*\///tmp/}.html"
Insert the page title into the ".html" file

print "<P><H2>${PAGENAME1}</H2></P>
<P><HR></P>
" >> "${PAGEID1/#*\///tmp/}.html"

Insert the page content into the ".html" file

cat_file "${PAGEIDl}.content.shtml" >> "${PAGEID1/#*\///tmp/}.html"
fi

Insert the page divider or horizontal rule and page
footer into the ".html". file

Copyright 2005 by Dana French

28

Successful Business Continuity

cat_file "hr.shtml" >> "${PAGEID1/#*\///tmp/}.html"
cat_file "footer.shtml" >> "${PAGEID1/#*\///tmp/}.html"

End the ".html" file with the appropriate HTML tags
print "</BODY></HTML>" >> "${PAGEID1/#*\///tmp/}.html"
fi
done < ${DATAFILE}
Cleanup any remaining temporary files
rm -f "${DATATMPO}"
rm -f "${DATATMP1}"
rm -f "${DATATMP2}"

}
FHAFHHHAAAHH R AR HEAAH R AE AR AR AR AR AR R R A R R R

menugen "${@}"

Console Access

Privileged Access

The term “Privileged Access” refers to capabilities beyond that granted to a normal
user, and in the context of “Business Continuity” this must be controlled and
monitored. There are numerous reasons to provide “privileged access” to a user such
as system configuration, user management, printer management, application
installation and management, network management, etc. The level of access granted
will depend upon who the user is, what tasks the user needs to perform, and how
often the user needs to perform these tasks. AIX provides some built in mechanisms
through the use of groups to provide some of this.

System Administrator

The "System Administrator" by default has full access to all system resources,
functions, and content. The user ID used for this purpose is "root". Access to this
login and password should be strictly reserved for System Administrators responsible
for the operation and maintenance of the system. No one outside this realm of
responsibility should be able to login to any AIX machine as "root" or have access to
the "root" password.

Printer Management

Copyright 2005 by Dana French 29

Successful Business Continuity

Application administrators will need the ability to manage and enable/disable
printers. This level of administration can be granted by adding the user name to the
"printg" group. This does not provide any other system or application privileges and
may be granted to those application users who are AIX literate.

User Management

The system administrator(s) for each machine and members of the your
organization's “Security” group will require administrative privileges which provide
user management capabilities. These privileges can be granted by adding the user to
the “security” group. This will allow the user the ability to create, modify, and
remove users from a system. They will also allow the ability to reset passwords,
unlock a "locked" account, and reset a users failed login count.

From time-to-time vendors, contractors, consultants, and application administrators
will need "root" access to one or more AIX machines. In order to provide this access,
we must analyze and segment the individual requirements and merits of each request.

"sudo'" Access

For those users who need to run a small set of specific commands as "root", they
should be granted "sudo" access. “sudo” is a commonly used freeware application
that provides normal users with limited advanced access privileges, and can be
closely monitored and controlled. The system administrator must configure "sudo"
access on each machine and assign privileges to each user to run each required
command.

For users who need to run a larger set of commands as “root” or who will require
privileged access for an extended period of time, other mechanisms may be better
suited for this purpose. The following mechanisms are not recommended and will
cause systems to fail security audits, but are described here simply for academic
purposes.

UID “0”

Any user on an AIX system which has UID number “0” (zero), is regarded as the
“root” user. The name of the the user with UID “0” (zero) is irrelevant, therefore the
UID of any user can be changed to “0” (zero) to provide privileged access, without
compromising the “root” password. To change the UID number of a user, edit the

Copyright 2005 by Dana French 30

Successful Business Continuity

“/etc/passwd” file and enter a “0” (zero) in the third field of the record associated
with the user.

“ash” Group

Another mechanism to provide privileged access to all system commands utilizes the
“set UID” permission bit. Any executable binary file with it's “set UID” bit turned
on will cause the file to be executed as the owner of the file, whenever the file is
executed by any user. Therefore an executable binary file with it's “set UID” bit
turned on and owned by “root”, when executed by any user, will run as though it
were executed by “root”.

Turning on the “set UID” bit on all system level commands would provide privileged
access, however that would be a very dangerous and undesirable thing to do. A
desirable thing to do may be to turn on the “set UID” bit of a single program, from
which we can gain privileged access to system level commands. We can achieve
this through the following procedure:

if [[' -f /usr/bin/ash]]

then
mkgroup ash
cp /usr/bin/ksh /usr/bin/ash
chown root:ash /usr/bin/ash
chmod 4550 /usr/bin/ash

fi

This procedure creates a group called “ash”, then copies the korn shell executable
binary file to a file called “ash”. The ownership of the file is changed to be owned
by “root” and a member of the group “ash”. The *“set UID” permission bit for the
file “/usr/bin/ash” is turned on and execute permissions are limited to “root” and
members of the group “ash”. No other users are permitted to execute this file. Now
any user that is a member of the group “ash” can execute the file “/usr/bin/ash” to
gain “root” level access privileges. Privileged user access can be controlled by
adding or removing users from the “ash” group and preserves “root” password
integrity.

Again, the above is NOT a recommended procedure and will likely cause more
problems than it solves, but it can be and is used occasionally.

Job Scheduling

Copyright 2005 by Dana French 31

Successful Business Continuity

Many mechanisms for job scheduling are available for an AIX system, the most
common of course is “cron”. All AIX system administrators should be familiar with
“cron” and as such it will not be discussed here.

A Business Continuity mentality requires the consideration of cross platform job
scheduling systems, because they provide the ability to easily redirect and reschedule
jobs from one system or data center, to another system or data center. The problem
with cross-platform job scheduling systems is they usually require an agent program
running on each machine with “root” level privileges. This privilege level is
required so the agent can execute a scheduled job as whatever user is required by the
job.

By their very nature, a cross-platform scheduling system is a security risk, it may be
a necessary risk for your organization, but business management and I'T management
need to be aware of the risk, and understand the implications to your organization.

An real world example of this danger with cross-platform scheduling systems (a
specific product will not be named, but it was NOT an IBM product) follows:

An international organization utilizing multiple platforms in multiple data centers
required a scheduling system to facilitate data flow between the various systems.
These systems included:

e Multiple IBM mainframes
* 4 AS/400's

* 200 AIX systems

* 100 MS Windows Servers

To implement the job scheduling system required an agent be installed on each
system, which was done. Once installed the system work beautifully, when a job on
one system was complete, messages were being passed to the next system
responsible for processing the data, and it took over, etc., etc.

Unfortunately it was observed that any system connected to the network with this job
scheduling agent installed had the capability of scheduling any job on any system in
the organization, to run as any user. Which meant that a Windows administrator
could schedule a job on the mainframe, AS/400, or AIX system as any user they
desired, without having user access to that system, and vice versa.

Copyright 2005 by Dana French 32

Successful Business Continuity

Furthermore, the only thing necessary to schedule a job on any system as any user,
was to have the job scheduling agent installed on any desktop system, and the agent
was easily obtainable. Which meant that anyone with this easily obtainable agent
could connect to the network and have access to any system, application or data. If
your organization uses an enterprise scheduler, access and security to the
participating systems must be closely controlled and monitored.

AIX CRON

The “cron” daemon is a tried and true tool for scheduling on all Unix systems and is
utilized in nearly all organizations that implement Unix systems. The “cron” daemon
is configured using a standard text files called a “crontab”, which contains
scheduling and command execution information. The “crontab” file provides the
system administrator the ability to schedule a job to run as any user, at any time of
day, on any day. However, the AIX “crontab” does not provide the ability to execute
a job, for example, on the second Sunday of the month. If you attempted to schedule
this in an AIX “crontab”, the record might appear as:

0 0 8,9,10,11,12,13,14 * 0 command_to_run

The above “crontab” record would NOT execute the job on the second sunday of the
month because the AIX “crond” assumes an “OR” between the monthday and the
weekday fields of each record. The result of the above record would be the job
“command to run” would be executed on the 8", 9™ 10, 11®, 12" 13™ and 14™ of
every month OR on every Sunday. To be able to schedule a job to be executed on
the second Sunday of each month requires the “crond” daemon to assume an “AND”
between each field of the record. The result of assuming an “AND” between each
field of the above “crontab” record would be the job would be executed only on
Sunday when the day of the month is the 8", 9™, 10" 11" 12%, 13" or 14™, which
equates to the second Sunday of each month.

Specifying any single weekday and a monthday of 1-7 is equivalent to the first
occurrence of that weekday in the month. The second occurrence of any single
weekday will always occur on a monthday between 8-14, the third occurrence of any
single weekday will always occur on a monthday between 15-21, and the fourth
occurrence on a monthday between 22-28.

Unfortunately, the AIX cron daemon does not permit the ability to specify the

“AND” conjunction between the weekday and monthday fields of a crontab record.
However, the following “crond” emulation script does:

Copyright 2005 by Dana French 33

Successful Business Continuity

#!/usr/bin/ksh93
FHEFEHFFFHFAFEF A A A A A A AR R R R RS
function usagemsg_ecrond k93 {
print "
Program: ecrond_k93

Usage: S${l##*/} [-?] [-vV] [-a] [-0] [-d crontabDir]
[-f crontabFile]

Where:
-a = Use "AND" between day of month and day
of week to determine match.
-0 = Use "OR" between day of month and day
of week to determine match. (Default)
-d crontabDir = Directory where crontabs are stored.
Default: /usr/spool/ecron_k93/crontabs
-f crontabFile = Name of a file containing crontab records.

If specified, only this file will be processed.

Default: none
-v = Verbose mode
-V = Very Verbose Mode
Example: ecrond k93 -v -a -d "${HOME}/crontab"

Author: Dana French (dfrench@mtxia.com)
Copyright 2006 by Dana French

\"AutoContent\" enabled

}
(Aaaas2saRassaaisasisaiassisasisasisaiisssisasisaiisalisasiss

Description:
Place a full text description of your shell function here.
Assumptions:

Provide a list of assumptions your shell function makes,
with a description of each assumption.

Dependencies:

Provide a list of dependencies your shell function has,
with a description of each dependency.

Products:

Provide a list of output your shell function produces,
with a description of each product.

Configured Usage:

Describe how your shell function should be used.

Details:

Place nothing here, the details are your shell function.

FHEFHESHHAE SR A AR A R R R R R
function mkdigarry
{

nameref FIELD="${1}"

nameref DIGARY="${2}"

typeset RNG DIG BEG END

IFS=",:"
RNGARY=(${FIELD})

Copyright 2005 by Dana French

34

Successful Business Continuity

for RNG in "${RNGARY[@]}"
do
if [["_${RNG}" == _+(?)$'-"+(?)]I
then
BEG="${RNG%%-*}"
END="$ {RNG##*-}"
((BEG > END)) &&
print -u 2 -- "# ERROR: ${0}: Invalid range: ${RNG}" &&
return 1
for ((DIG=${BEG}; DIG<=${END}; ++DIG))
do
DIGARY[${DIG}]="true"
done
else
DIGARY[${RNG}]="true"
fi
done
return 0
}
FHEFHFFFFFFHFFFFF A A A A A A R R
function ecrond k93 {
typeset TRUE="1"
typeset FALSE="0"
typeset RETCODE="0"
typeset VERBOSE="${FALSE}"
typeset VERYVERB="${FALSE}"
typeset VERSION="1.0"
typeset DOMDOW="${FALSE}"
typeset CRONFILE="${FALSE}"
typeset DATESTAMP=$(date +"%YIm3dIHIMIW")
typeset CURMON="${DATESTAMP:4:2}"
typeset CURDOM="${DATESTAMP:6:2}"
typeset CURHOUR="${DATESTAMP:8:2}"
typeset CURMIN="${DATESTAMP:10:2}"
typeset CURDOW="${DATESTAMP:12}"
typeset DD_CRONTAB="/usr/spool/ecron_k93/crontabs"
typeset -Z1 DOW
typeset -Z2 MON DOM HOUR MIN
typeset F1 F2 F3 F4 F5
typeset CMDLINE
typeset CRONTAB
typeset CRONLOG="/tmp/ecrond k93.log"
typeset CRONTABFILE=""
typeset UID="$(id k93 -u)"

while getopts ":vVoad:f:" OPTION
do
case "${OPTION}" in
'o') DOMDOW="${FALSE}";;
'a') DOMDOW="${TRUE}";;
'd') DD_CRONTAB="${OPTARG}";;
'd') DD_CRONTAB="${OPTARG}";;
'f') CRONFILE="${TRUE}"
CRONTABFILE="${OPTARG}";;
'v') VERBOSE="${TRUE}";;
'V') VERYVERB="${TRUE}";;
'?') usagemsg_ecrond k93 "${0}" && return 1 ;;
':') usagemsg_ecrond k93 "${0}" && return 1 ;;
'#') usagemsg_ecrond_k93 "${0}" && return 1 ;;
esac
done

shift $((${OPTIND} - 1))
((VERBOSE == TRUE)) && print -u 2 -- "# Version: ${VERSION}"
(g3 SRR SSS s S s EESSsEESESEEESESEESSSEEESSIELE S

trap "usagemsg_ecrond_k93 ${0}" EXIT

Copyright 2005 by Dana French

Successful Business Continuity

RETCODE="1"

if ((CRONFILE == FALSE)) && [[! -d "${DD_CRONTAB}" 1]

then
print -u 2 -- "# ERROR: Specfied crontab directory is invalid: ${DD_CRONTAB}"
return ${RETCODE}

fi

RETCODE="2"

if ((CRONFILE == TRUE)) && [[! -f "${CRONTABFILE}"]]

then
print -u 2 -- "# ERROR: Specfied crontab file is invalid: ${CRONTABFILE}"
return ${RETCODE}

fi

RETCODE="0"

trap "-" EXIT

((VERYVERB == TRUE)) && set -x

FHESHEE R AR R AR R R R R R R R R

print -r -- "curmin=${CURMIN}"

print -r -- "curhour=${CURHOUR}"

print -r -- "curdom=${CURDOM}"

print -r -- "curmon=${CURMON}"

print -r -- "curdow=${CURDOW}"
((CRONFILE == FALSE)) && FILELIST=(${DD_CRONTAB}/*)
((CRONFILE == TRUE)) && FILELIST=(${CRONTABFILE})

for CRONTAB in "${FILELIST[@]}"

do
if [["_$(id_k93 -un ${CRONTAB##*/})" == "_"]]
then
print -u 2 -- "ERROR: Crontab file is not named for a valid user."
continue
fi
if ((UID != 0))
then
if [[! -O "${CRONTAB}" 1]]
then
print -u 2 -- "# ${CRONTAB} is not owned by the current user"
continue
fi
fi
[[! -s "${CRONTAB}"]] && continue
((VERBOSE == TRUE)) && print -r -u 2 -- "# Crontab file: ${CRONTAB}"
while IFS=$' \t\n' read -r -- Fl1 F2 F3 F4 F5 CMDLINE
do
" ${F1l}" == ' _*']] && F1="0-59"
" ${F2}" == ' _*']] && F2="0-23"
" ${F3}" == ' *']] && F3="1-31"
" ${F4}" == ' *']] && F4="1-12"
" ${F5}" == ' *']] && F5="0-6"

unset MINS HRS MDAYS MONS WDAYS
set -A MINS

set -A HRS

set -A MDAYS

set -A MONS

set -A WDAYS

mkdigarry F1 MINS || continue
mkdigarry F2 HRS || continue
mkdigarry F3 MDAYS || continue

Copyright 2005 by Dana French

36

Successful Business Continuity

mkdigarry F4 MONS || continue
mkdigarry F5 WDAYS || continue

((MATCH = FALSE))

for MON in "${!MONS[@]}"

do

if |

then

((MON
(MON
(MON

>= 1)
<= 12)
== CURMO

&&
&&

N)))

for HOUR in "${!HRS[@]}"

do
if (

then

fi
done
MON

((HOUR
(HOUR
(HOUR

for MIN
do
if |

then

fi
done
HOUR
HOUR

> 0) &&
<= 23) &&
== CURHOUR)))

in "${!MINS[@]}"

((MIN >= 0) &&
(MIN <= 59) &&

(MIN == CURMIN)))
if ((DOMDOW == TRUE))
then
for DOW in "S${!WDAYS[@]}"
do
if (((DOW >= 0) &&
(DOW <= 6) &&
(DOW == CURDOW)))
then
for DOM in "${!MDAYS[@]}"
do

if (((DOM >= 1) &&
(DOM <= 31) &&
(DOM == CURDOM)))

then
((MATCH = TRUE))
break 5
fi # DOM
done # DOM
fi # DOW
done # DOW
else
for DOW in "${!WDAYS[@]}"
do
if (((DOW >= 0) &&
(DOW <= 6) &&
(DOW == CURDOW)))
then
((MATCH = TRUE))
break 4
fi # DOW
done # DOW
for DOM in "${!MDAYS[@]}"
do
if (((DOM >= 1) &&
(DOM <= 31) &&
(DOM == CURDOM)))
then
((MATCH = TRUE))
break 4
fi # DOM
done # DOM
fi # DOMDOW
MIN
MIN

Copyright 2005 by Dana French

37

Successful Business Continuity

done # MON

if ((MATCH == TRUE))

then
print -r -- "MATCH=TRUE"
print -r -- "${MIN} ${HOUR} ${DOM} ${MON} ${DOW} ${CMDLINE}"
if ((UID == 0))
then
print -- su - ${CRONTAB##%*/} -c "nohup ${CMDLINE} >> ${CRONLOG}"
su - ${CRONTAB##*/} -c "nohup ${CMDLINE} >> ${CRONLOG} 2>&l &"
else
print -- nohup ksh93 -- "${CMDLINE} >> ${CRONLOG} 2>&l &"
nohup ksh93 -- "${CMDLINE}" >> ${CRONLOG} 2>&l &
fi
fi

done < "${CRONTAB}"
done

return ${RETCODE}

}

FHEFHFFFFHFAFFF A A A A A A R RS
#H##

Description:

a4

The id k93 function writes to standard output a message
containing the system identifications (ID) for a

specified user. The system IDs are numbers which

identify users and user groups to the system.

Details:
HHEH
FHEFHESEHAA SR AHAE A A A AR RS E A F AR R R
function id k93 {
typeset TRUE="0"
typeset FALSE="1"
typeset VERBOSE="${FALSE}"
typeset VERYVERB="${FALSE}"
typeset ONLYGID="${FALSE}"
typeset ONLYGRP="${FALSE}"
typeset ONLYUSR="${FALSE}"
typeset REALIDS="${FALSE}"
typeset NAMEOUT="${FALSE}"
typeset USERNAME
typeset PWDUSER
typeset PWDPWD
typeset PWDUID
typeset PWDGID
typeset PWDGECOS
typeset PWDHOME
typeset PWDSHELL
typeset EUID
typeset EGID

while getopts ":GgurnvV" OPTION
do
case "${OPTION}" in
'G') ONLYGID="${TRUE}";;
g') ONLYGRP="${TRUE}";;

'u') ONLYUSR="${TRUE}";;
'r') REALIDS="${TRUE}";;
'n') NAMEOUT="${TRUE}";;
'v') VERBOSE="${TRUE}";;
'V') VERYVERB="${TRUE}";;
'?') usagemsg_id k93 "${0}" && return 1 ;;
esac
done

shift $((${OPTIND} - 1))

Copyright 2005 by Dana French

38

Successful Business Continuity

FHAHHHHHAHH AR R R R R R R R R R R R R R

a4

Obtain the target username from the first command line
arqument, if NULL determine the target username from
the existing environment variable LOGIN. If this value
is NULL use LOGNAME, if still NULL use USER. If still
NULL exit with an error message.

4

USERNAME="${1:-${LOGIN}}"

USERNAME="$ {USERNAME : -$ {LOGNAME} } "

USERNAME="$ {USERNAME: -$ {USER} }"

USERNAME="$ {USERNAME: ?ERROR: Unable to determine user name}"

4

Read each line of the /etc/passwd file and match the
target username against each username listed in the
file. When a match is found, save the UID and GID
values for later use and stop processing the file.

#H#4
while IFS=":" read -- PWDUSER PWDPWD PWDUID PWDGID PWDGECOS PWDHOME PWDSHELL
do
if [["_${PWDUSER}" = "_${USERNAME}"]]
then
EUID="${PWDUID}"
EGID="${PWDGID}"
break
fi

done < /etc/passwd

if [["_${EUID}" == "_" 11 || [["_${EGID}" == "_" 1]
then
print -u 2 -- "# ${0}: ${USERNAME}: No such user"
return 1
fi

If the "-u" option was entered on the command line,
output the UID number and exit the function.

((ONLYUSR == TRUE && NAMEOUT == FALSE)) && print "${EUID}" && return 0

If the "-u" and "-n" options were entered on the
command line, output the username and exit the function.

((ONLYUSR == TRUE && NAMEOUT == TRUE)) && print "${USERNAME}" && return 0

If the "-g" option was entered on the command line,
output the GID number and exit the function.

((ONLYGRP == TRUE && NAMEOUT == FALSE)) && print "${EGID}" && return 0

#H##

Read each line from the /etc/group file to determine the
group name associated with the GID number extracted from
the user record in the /etc/passwd file. Assign this
group name as the primary group.

#HH#
while IFS=":" read -- GRPNAME GRPPWD GRPGID GRPUSERS
do
if [["_${EGID}" = "_${GRPGID}"]]
then
PRIMARYGROUP="$ {GRPNAME}"
break
fi

done < /etc/group

Copyright 2005 by Dana French

Successful Business Continuity

If the "-g" and "-n" options were entered on the
command line, output the primary group name and exit the function.

((ONLYGRP == TRUE && NAMEOUT == TRUE)) && print "${PRIMARYGROUP}" && return 0

HH##

To ensure empty arrays, incase multiple user names are
allowed on the command line, unset the arrays used to
contain the list of secondary group names and GID

numbers.

HH#4

unset GRPNAMLIST
unset GRPGIDLIST

#H##

Use a counter to keep track of the GID order in the
array. Since the GID number may be greater than the
allowed size of a korn shell array, a separate counter
is used.

#H##

CNT=0

#H##

Loop through each line of the /etc/group file and

determine what groups the username is associated with.
When a group is found, store the group name and the GID
number in separate arrays to preserve the numerical

order.
#HH#
while IFS=":" read -- GRPNAME GRPPWD GRPGID GRPUSERS
do
((GRPGID == EGID)) && continue
if [["_${GRPUSERS}" = _${USERNAME}]] ||
[["_S${GRPUSERS}" = S${USERNAME},* 1] ||
[["_S${GRPUSERS}" = _*,${USERNAME},*]] ||
[["_S${GRPUSERS}" = *,${USERNAME}]]
then

GRPNAMLIST[CNT]="${GRPNAME}"
GRPGIDLIST[CNT]="${GRPGID}"
((CNT++))
fi
done < /etc/group

If the '-G' option was entered on the command line,
print the GID number of the primary group. If the '-n'
option was also used, print the primary group name,
otherwise print the normal 'id' command output.

if ((ONLYGID == TRUE && NAMEOUT == FALSE))
then
print -r -n -- "${EGID}"
elif ((ONLYGID == TRUE && NAMEOUT == TRUE))
then
print -r -n -- "${PRIMARYGROUP}"
else
print -r -n -- "uid=${EUID}(${USERNAME}) gid=${EGID} (${PRIMARYGROUP})"
((${#GRPGIDLIST[*]} != 0)) && print -r -n -- " groups="
fi
HH##

Loop through each stored secondary GID associated with the
user and print as specified by the command line options.

#HH#
coMMA=""

for GRP in "${!GRPGIDLIST[@]}"
do

Copyright 2005 by Dana French

Successful Business Continuity

If the '-G' option was specified on the command line,
the print the secondary group GID number. If the '-n'
option was also specified, print the secondary group

name. Otherwise print the normal 'id' command output.

#HH#
if ((ONLYGID == TRUE && NAMEOUT == FALSE))
then
print -r -n -- " ${GRPGIDLIST[${GRP}]}"
elif ((ONLYGID == TRUE && NAMEOUT == TRUE))
then
print -r -n -- " ${GRPNAMLIST[${GRP}]}"
else
print -r -n "${COMMA}${GRPGIDLIST[${GRP}]}(${GRPNAMLIST[${GRP}]})"
COMMA=", "
fi
done

Up to this point, no CR characters have been printed,
since all output is now complete, send a CR character.

print

Return to the calling function with a successful
return code.

return 0
}
FHESHEAA AR A A A A AR SRS R

ecrond k93 “${@}”

The “ecrond k93 crond emulation script is designed to be executed as a job
scheduled to run every minute from the regular AIX crontab. It can be scheduled in
the “root” crontab, however it is recommended that, if used, it be scheduled from a
regular user account “crontab”. Also it should be used on a limited basis because it
will be run every minute of every hour of every day.

Business Continuity Mentality

One of the main points that should be taken from this series of articles, is that
Business Continuity is not a project that is performed, documented, and then stored
away on a bookshelf where it is kept in case it should become necessary to use
someday. Business continuity is a way of conducting business on a daily basis. It is
a mentality that must be adopted by all personnel in an organization. And in order
for that to happen, it must be a priority for management, if management is not
committed to making it happen, don't start the process. Without management
involvement and commitment, it is a waste of time, energy, and resources to attempt
to implement this methodology.

Sometimes it is difficult to gauge the level of management's commitment to adopting
a mentality of business continuity, and this is usually because they do not understand

Copyright 2005 by Dana French 41

Successful Business Continuity

that it is an enterprise wide change in the way business is conducted. When
discussing the adoption of a business continuity methodology with management,
stress the point that it is an enterprise wide methodology and will require the
participation of all personnel in the organization. Explain that this is a business
methodology, a change in the way all business is conducted, not a project.

Project Planning

An enterprise wide mentality of business continuity means that all future projects
will be designed, planned, implemented, and supported with this concept in mind.
All project plans will have business continuity (BC) and disaster recovery (DR)
components. The specific BC/DR tasks included in all project plans will be
dependent upon the methodologies adopted by your organization, but will probably
contain many of the following:

Business Impact Analysis
Determine criticality of this project to BAU (1,2,3)
Identify dependencies
Identify prerequisites
Determine Recovery Time Objective (RTO)
Determine Recovery Point Objective (RPO)
Determine Decision Lead Time (DLT)
Determine DR provisioning requirements
Hardware
Software
Facilities
Backup and Restore
Provisioning for DR
High Availability
Identify and eliminate single points of failure (SPOF's)
Disaster Recovery
Allocate funds and resources for lifetime of business function
being implemented.
Maintenance and support
Allocate resources for integration into existing support systems

Conclusion:

Copyright 2005 by Dana French 42

Successful Business Continuity

Business continuity consists of those activities that provide order and sense to the IT
architecture. Those activities include the adoption of policies, guidelines, standards
and procedures for designing, implementing, managing and supporting your
environment. These result of these activities should be the basis of all work
performed by the IT department, furthermore it is the duty of the IT department to
ensure these rules are followed enterprise wide.

Some of the policies and standards identified in this series of articles:

Policies:

* Each entity defined in this environment will be configured with an enterprise
wide unique identifier so that it may be moved or reconfigured anywhere in
the environment.

* The Network Information Manager (NIM) is utilized for providing access to
all operating system components.

* The configuration and implementation of all components comprising each
LPAR is documented with both hard and soft copies of the documentation.

Standards:

The purpose of these standards is to ensure business continuity during normal system
maintenance, planned and unplanned outages, hardware and software failures,
network and communication failures, and/or a disaster recovery implementation.

A design aspect of these standards is they can be implemented in a standalone, high
availability, or disaster recovery scenario. Recognize that there are not multiple
standards, one for each scenario, there is one single standard that is portable across
all scenario's. This reduces support and training costs, and increases efficiency,
supportability, recoverability, and availability.

Some of the basic concepts of these standards:
* Business functions are not tied to a specific machine.
* Hardware resources can be shared or distributed among associated business
functions.
* Any system can act as a failover for any other system.
* Any data center can act as a disaster recovery site for any other data center.

Copyright 2005 by Dana French 43

Successful Business Continuity

The result of this series of articles on the topic of “Successful Business Continuity”
should be the recognition that business continuity is not a project to be staffed and
performed, and then forgotten. Business continuity is way of doing business on a
regular basis, it is business-as-usual. In order to ensure business continuity,
organizations must design, implement, maintain and enforce policies, procedures,
standards, and guidelines that encompass all aspects of their critical business
functions. Business continuity must be the beginning point in systems design, not
the ending point. Unfortunately, very few systems are built starting from the business
continuity perspective and working backwards.

Copyright 2005 by Dana French 44

